Exercise and insulin cause GLUT-4 translocation in human skeletal muscle.
نویسندگان
چکیده
Studies in rodents have established that GLUT-4 translocation is the major mechanism by which insulin and exercise increase glucose uptake in skeletal muscle. In contrast, much less is known about the translocation phenomenon in human skeletal muscle. In the current study, nine healthy volunteers were studied on two different days. On one day, biopsies of vastus lateralis muscle were taken before and after a 2-h euglycemic-hyperinsulinemic clamp (0.8 mU ⋅ kg-1 ⋅ min-1). On another day, subjects exercised for 60 min at 70% of maximal oxygen consumption (V˙o 2 max), a biopsy was obtained, and the same clamp and biopsy procedure was performed as that during the previous experiment. Compared with insulin treatment alone, glucose infusion rates were significantly increased during the postexercise clamp for the periods 0-30 min, 30-60 min, and 60-90 min, but not during the last 30 min of the clamp. Plasma membrane GLUT-4 content was significantly increased in response to physiological hyperinsulinemia (32% above rest), exercise (35%), and the combination of exercise plus insulin (44%). Phosphorylation of Akt, a putative signaling intermediary for GLUT-4 translocation, was increased in response to insulin (640% above rest), exercise (280%), and exercise plus insulin (1,000%). These data demonstrate that two normal physiological conditions, moderate intensity exercise and physiological hyperinsulinemia ∼56 μU/ml, cause GLUT-4 translocation and Akt phosphorylation in human skeletal muscle.
منابع مشابه
Conjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise
Objective(s):This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. Materials and Methods:Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) s...
متن کاملExercise regulation of glucose transport in skeletal muscle.
Exercise increases the rate of glucose uptake into the contracting skeletal muscles. This effect of exercise is similar to the action of insulin on glucose uptake, and the mechanism through which both stimuli increase skeletal muscle glucose uptake involves the translocation of GLUT-4 glucose transporters to the plasma membrane and transverse tubules. Most studies suggest that exercise and insu...
متن کاملIncreased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise.
The purpose of this study was to determine whether the increase in insulin sensitivity of skeletal muscle glucose transport induced by a single bout of exercise is mediated by enhanced translocation of the GLUT-4 glucose transporter to the cell surface. The rate of 3-O-[3H]methyl-D-glucose transport stimulated by a submaximally effective concentration of insulin (30 microU/ml) was approximately...
متن کاملEffects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle.
To investigate the effect of exercise on GLUT-4, hexokinase, and glycogenin gene expression in human skeletal muscle, 10 untrained subjects (6 women and 4 men, 21.4 +/- 1.2 yr, 66.3 +/- 5.0 kg, peak oxygen consumption = 2.30 +/- 0.19 l/min) exercised for 60 min on a cycle ergometer at a power output requiring 73 +/- 4% peak oxygen consumption. Muscle samples were obtained by needle biopsy befor...
متن کاملInsulin-induced translocation of facilitative glucose transporters in fetal/neonatal rat skeletal muscle.
We examined the effect of insulin on fetal/neonatal rat skeletal muscle GLUT-1 and GLUT-4 concentrations and subcellular distribution by employing immunohistochemical analysis and subcellular fractionation followed by Western blot analysis. We observed that insulin did not alter total GLUT-1 or GLUT-4 concentrations or the GLUT-1 subcellular distribution in fetal/neonatal or adult skeletal musc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 277 4 شماره
صفحات -
تاریخ انتشار 1999